Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Emerg Infect Dis ; 29(10): 2072-2082, 2023 10.
Article in English | MEDLINE | ID: mdl-37735743

ABSTRACT

The 2010 cholera epidemic in Haiti was thought to have ended in 2019, and the Prime Minister of Haiti declared the country cholera-free in February 2022. On September 25, 2022, cholera cases were again identified in Port-au-Prince. We compared genomic data from 42 clinical Vibrio cholerae strains from 2022 with data from 327 other strains from Haiti and 1,824 strains collected worldwide. The 2022 isolates were homogeneous and closely related to clinical and environmental strains circulating in Haiti during 2012-2019. Bayesian hypothesis testing indicated that the 2022 clinical isolates shared their most recent common ancestor with an environmental lineage circulating in Haiti in July 2018. Our findings strongly suggest that toxigenic V. cholerae O1 can persist for years in aquatic environmental reservoirs and ignite new outbreaks. These results highlight the urgent need for improved public health infrastructure and possible periodic vaccination campaigns to maintain population immunity against V. cholerae.


Subject(s)
Cholera , Vibrio cholerae , Humans , Vibrio cholerae/genetics , Haiti/epidemiology , Bayes Theorem , Cholera/epidemiology , Disease Outbreaks
2.
Emerg Infect Dis ; 29(10): 2141-2144, 2023 10.
Article in English | MEDLINE | ID: mdl-37735754

ABSTRACT

Vibrio mimicus caused a seafood-associated outbreak in Florida, USA, in which 4 of 6 case-patients were hospitalized; 1 required intensive care for severe diarrhea. Strains were ctx-negative but carried genes for other virulence determinants (hemolysin, proteases, and types I-IV and VI secretion systems). Cholera toxin-negative bacterial strains can cause cholera-like disease.


Subject(s)
Cholera , Vibrio mimicus , Humans , Cholera/epidemiology , Florida/epidemiology , Vibrio mimicus/genetics , Disease Outbreaks , Seafood
3.
Cancer Causes Control ; 34(10): 873-881, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37286847

ABSTRACT

PURPOSE: The gut microbiome is a potentially important contributor to endogenous estrogen levels after menopause. In healthy postmenopausal women, we examined associations of fecal microbiome composition with levels of urinary estrogens, their metabolites, and relevant metabolic pathway ratios implicated in breast cancer risk. METHODS: Eligible postmenopausal women (n = 164) had a body mass index (BMI) ≤ 35 kg/m2 and no history of hormone use (previous 6 months) or cancer/metabolic disorders. Estrogens were quantified in spot urine samples with liquid chromatography-high resolution mass spectrometry (corrected for creatinine). Bacterial DNA was isolated from fecal samples and the V1-V2 hypervariable regions of 16S rRNA were sequenced on the Illumina MiSeq platform. We examined associations of gut microbiome's indices of within-sample (alpha) diversity (i.e., Shannon, Chao1, and Inverse Simpson), phylogenetic diversity, and the ratio of the two main phyla (Firmicutes and Bacteroidetes; F/B ratio) with individual estrogens and metabolic ratios, adjusted for age and BMI. RESULTS: In this sample of 164 healthy postmenopausal women, the mean age was 62.9 years (range 47.0-86.0). We found significant inverse associations of observed species with 4-pathway:total estrogens (p = 0.04) and 4-pathway:2-pathway (p = 0.01). Shannon index was positively associated with 2-catechols: methylated 2-catechols (p = 0.04). Chao1 was inversely associated with E1:total estrogens (p = 0.04), and 4-pathway:2-pathway (p = 0.02) and positively associated with 2-pathway:parent estrogens (p = 0.01). Phylogenetic diversity was inversely associated with 4-pathway:total estrogens (p = 0.02), 4-pathway:parent estrogens (p = 0.03), 4-pathway:2-pathway (p = 0.01), and 4-pathway:16-pathway (p = 0.03) and positively associated with 2-pathway:parent estrogens (p = 0.01). F/B ratio was not associated with any of the estrogen measures. CONCLUSION: Microbial diversity was associated with several estrogen metabolism ratios implicated in breast cancer risk. Further studies are warranted to confirm these findings in a larger and more representative sample of postmenopausal women, particularly with enrichment of minority participants.


Subject(s)
Breast Neoplasms , Gastrointestinal Microbiome , Female , Humans , Middle Aged , Aged , Aged, 80 and over , Postmenopause , RNA, Ribosomal, 16S/genetics , Phylogeny , Estrogens/metabolism , Breast Neoplasms/metabolism , Catechols
4.
Am J Trop Med Hyg ; 108(6): 1256-1263, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37127267

ABSTRACT

Keystone orthobunyavirus (KEYV), a member of the genus Orthobunyavirus, was first isolated in 1964 from mosquitoes in Keystone, Florida. Although data on human infections are limited, the virus has been linked to a fever/rash syndrome and, possibly, encephalitis, with early studies suggesting that 20% of persons in the Tampa, Florida, region had antibodies to KEYV. To assess the distribution and diversity of KEYV in other regions of Florida, we collected > 6,000 mosquitoes from 43 sampling sites in St. Johns County between June 2019 and April 2020. Mosquitoes were separated into pools by species and collection date and site. All pools with Aedes spp. (293 pools, 2,171 mosquitoes) were screened with a real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assay that identifies KEYV and other closely related virus species of what was previously designated as the California encephalitis serogroup. In 2020, screening for KEYV was expanded to include 211 pools of Culex mosquitoes from sites where KEYV-positive Aedes spp. had been identified. rRT-PCR-positive samples were inoculated into cell cultures, and five KEYV isolates from Aedes atlanticus pools were isolated and sequenced. Analyses of the KEYV large genome segment sequences revealed two distinct KEYV clades, whereas analyses of the medium and small genome segments uncovered past reassortment events. Our data documented the ongoing seasonal circulation of multiple KEYV clades within Ae. atlanticus mosquito populations along the east coast of Florida, highlighting the need for further studies of the impact of this virus on human health.


Subject(s)
Aedes , Culex , Encephalitis Virus, California , Orthobunyavirus , Animals , Humans , Florida/epidemiology , Orthobunyavirus/genetics , Polymerase Chain Reaction , Mosquito Vectors
5.
Microbiol Spectr ; 11(1): e0362422, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36537825

ABSTRACT

Toxigenic Vibrio cholerae O1 serotype Ogawa was introduced involuntarily into Haiti in October 2010, and virtually all of the clinical strains isolated during the first 5 years of the epidemic were Ogawa. Inaba strains were identified intermittently prior to 2015, with diverse mutations resulting in a common phenotype. In 2015, the percentage of clinical infections due to the Inaba serotype began to rapidly increase, with Inaba supplanting Ogawa as the dominant serotype during the subsequent 4 years. We investigated the molecular basis of the serotype switch and confirmed that all Inaba strains had the same level of mRNA expression of the wbeT genes, as well as the same translation levels for the truncated WbeT proteins in the V. cholerae Inaba isolates. Neither wbeT gene expression levels, differential mutations, or truncation size of the WbeT proteins appeared to be responsible for the successful Inaba switch in 2015. Our phylodynamic analysis demonstrated that the V. cholerae Inaba strains in Haiti evolved directly from Ogawa strains and that a significant increase of diversifying selection at the population level occurred at the time of the Ogawa-Inaba switch. We conclude that the emergence of the Inaba serotype was driven by diversifying selection, independent of the mutational pattern in the wbeT gene. IMPORTANCE Our phylodynamic analysis demonstrated that Vibrio cholerae Inaba strains in Haiti evolved directly from Ogawa strains. Our results support the hypothesis that after an initial Ogawa-dominated epidemic wave, V. cholerae Inaba was able to become the dominant strain thanks to a selective advantage driven by ongoing diversifying selection, independently from the mutational pattern in the wbeT gene.


Subject(s)
Cholera , Vibrio cholerae O1 , Humans , Vibrio cholerae O1/genetics , Serogroup , Cholera/epidemiology , Haiti/epidemiology , Serotyping
6.
Clin Infect Dis ; 76(3): e491-e494, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36029095

ABSTRACT

We screened 65 longitudinally collected nasal swab samples from 31 children aged 0-16 years who were positive for severe acute respiratory syndrome coronavirus 2 Omicron BA.1. By day 7 after onset of symptoms, 48% of children remained positive by rapid antigen test. In a sample subset, we found 100% correlation between antigen test results and virus culture.


Subject(s)
COVID-19 , Humans , Child , COVID-19/diagnosis , SARS-CoV-2 , Immunologic Tests
7.
Emerg Infect Dis ; 28(12): 2482-2490, 2022 12.
Article in English | MEDLINE | ID: mdl-36417939

ABSTRACT

Cholera causes substantial illness and death in Africa. We analyzed 24 toxigenic Vibrio cholerae O1 strains isolated in 2015-2017 from patients in the Great Lakes region of the Democratic Republic of the Congo. Strains originating in southern Asia appeared to be part of the T10 introduction event in eastern Africa. We identified 2 main strain lineages, most recently a lineage corresponding to sequence type 515, a V. cholerae cluster previously reported in the Lake Kivu region. In 41% of fecal samples from cholera patients, we also identified a novel ICP1 (Bangladesh cholera phage 1) bacteriophage, genetically distinct from ICP1 isolates previously detected in Asia. Bacteriophage resistance occurred in distinct clades along both internal and external branches of the cholera phylogeny. This bacteriophage appears to have served as a major driver for cholera evolution and spread, and its appearance highlights the complex evolutionary dynamic that occurs between predatory phage and bacterial host.


Subject(s)
Bacteriophages , Cholera , Vibrio cholerae O1 , Humans , Cholera/epidemiology , Cholera/microbiology , Bacteriophages/genetics , Democratic Republic of the Congo/epidemiology , Phylogeny
8.
Microbiol Spectr ; 10(4): e0135322, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35699458

ABSTRACT

Antiretroviral therapy (ART) can sustain the suppression of plasma viremia to below detection levels. Infected individuals undergoing a treatment interruption exhibit rapid viral rebound in plasma viremia which is fueled by cellular reservoirs such as CD4+ T cells, myeloid cells, and potentially uncharacterized cellular sources. Interrogating the populations of viruses found during analytical treatment interruption (ATI) can give insights into the biologically competent reservoirs that persist under effective ART as well as the nature of the cellular reservoirs that enable viral persistence under ART. We interrogated plasma viremia from four rare cases of individuals undergoing sequential ATIs. We performed next-generation sequencing (NGS) on cell-associated viral DNA and cell-free virus to understand the interrelationship between sequential ATIs as well as the relationship between viral genomes in circulating peripheral blood mononuclear cells (PBMCs) and RNA from rebound plasma. We observed population differences between viral populations recrudescing at sequential ATIs as well as divergence between viral sequences in plasma and those in PBMCs. This indicated that viruses in PBMCs were not a major source of post-ATI viremia and highlights the role of anatomic reservoirs in post-ATI viremia and viral persistence. IMPORTANCE Even with effective ART, HIV-1 persists at undetectable levels and rebounds in individuals who stop treatment. Cellular and anatomical reservoirs ignite viral rebound upon treatment interruption, remaining one of the key obstacles for HIV-1 cure. To further examine HIV-1 persistence, a better understanding of the distinct populations that fuel viral rebound is necessary to identify and target reservoirs and the eradication of HIV-1. This study investigates the populations of viruses found from proviral genomes from PBMCs and plasma at rebound from a unique cohort of individuals who underwent multiple rounds of treatment interruption. Using NGS, we characterized the subtypes of viral sequences and found divergence in viral populations between plasma and PBMCs at each rebound, suggesting that distinct viral populations appear at each treatment interruption.


Subject(s)
HIV Infections , HIV-1 , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes , HIV Infections/drug therapy , HIV-1/genetics , Humans , Leukocytes, Mononuclear , Proviruses/genetics , Viral Load , Viremia/drug therapy
9.
Clin Infect Dis ; 75(9): 1618-1627, 2022 10 29.
Article in English | MEDLINE | ID: mdl-35271704

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant has caused a dramatic resurgence in infections in the United Sates, raising questions regarding potential transmissibility among vaccinated individuals. METHODS: Between October 2020 and July 2021, we sequenced 4439 SARS-CoV-2 full genomes, 23% of all known infections in Alachua County, Florida, including 109 vaccine breakthrough cases. Univariate and multivariate regression analyses were conducted to evaluate associations between viral RNA burden and patient characteristics. Contact tracing and phylogenetic analysis were used to investigate direct transmissions involving vaccinated individuals. RESULTS: The majority of breakthrough sequences with lineage assignment were classified as Delta variants (74.6%) and occurred, on average, about 3 months (104 ±â€…57.5 days) after full vaccination, at the same time (June-July 2021) of Delta variant exponential spread within the county. Six Delta variant transmission pairs between fully vaccinated individuals were identified through contact tracing, 3 of which were confirmed by phylogenetic analysis. Delta breakthroughs exhibited broad viral RNA copy number values during acute infection (interquartile range, 1.2-8.64 Log copies/mL), on average 38% lower than matched unvaccinated patients (3.29-10.81 Log copies/mL, P < .00001). Nevertheless, 49% to 50% of all breakthroughs, and 56% to 60% of Delta-infected breakthroughs exhibited viral RNA levels above the transmissibility threshold (4 Log copies/mL) irrespective of time after vaccination. CONCLUSIONS: Delta infection transmissibility and general viral RNA quantification patterns in vaccinated individuals suggest limited levels of sterilizing immunity that need to be considered by public health policies. In particular, ongoing evaluation of vaccine boosters should specifically address whether extra vaccine doses curb breakthrough contribution to epidemic spread.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , Phylogeny , Florida/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination
10.
Clin Infect Dis ; 75(1): e1184-e1187, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34718467

ABSTRACT

We isolated a novel coronavirus from a medical team member presenting with fever and malaise after travel to Haiti. The virus showed 99.4% similarity with a recombinant canine coronavirus recently identified in a pneumonia patient in Malaysia, suggesting that infection with this virus and/or recombinant variants occurs in multiple locations.


Subject(s)
COVID-19 , Coronavirus, Canine , Animals , Dogs , Haiti , Humans , SARS-CoV-2/genetics , Travel
11.
Clin Infect Dis ; 74(11): 2057-2060, 2022 06 10.
Article in English | MEDLINE | ID: mdl-34471930

ABSTRACT

After an initial wave of coronavirus disease 2019 (COVID-19) in Haiti in summer 2020 (primarily lineage B.1), seropositivity for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) was ~40%. Variant P.1 (gamma) was introduced in February 2021, with an initially limited introduction followed by exponential local dissemination within this unvaccinated population with prior exposure to earlier SARS-CoV-2 lineages.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Haiti/epidemiology , Humans , SARS-CoV-2/genetics
12.
Nature ; 600(7887): 133-137, 2021 12.
Article in English | MEDLINE | ID: mdl-34789872

ABSTRACT

Coronaviruses have caused three major epidemics since 2003, including the ongoing SARS-CoV-2 pandemic. In each case, the emergence of coronavirus in our species has been associated with zoonotic transmissions from animal reservoirs1,2, underscoring how prone such pathogens are to spill over and adapt to new species. Among the four recognized genera of the family Coronaviridae, human infections reported so far have been limited to alphacoronaviruses and betacoronaviruses3-5. Here we identify porcine deltacoronavirus strains in plasma samples of three Haitian children with acute undifferentiated febrile illness. Genomic and evolutionary analyses reveal that human infections were the result of at least two independent zoonoses of distinct viral lineages that acquired the same mutational signature in the genes encoding Nsp15 and the spike glycoprotein. In particular, structural analysis predicts that one of the changes in the spike S1 subunit, which contains the receptor-binding domain, may affect the flexibility of the protein and its binding to the host cell receptor. Our findings highlight the potential for evolutionary change and adaptation leading to human infections by coronaviruses outside of the previously recognized human-associated coronavirus groups, particularly in settings where there may be close human-animal contact.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Deltacoronavirus/isolation & purification , Swine/virology , Viral Zoonoses/epidemiology , Viral Zoonoses/virology , Amino Acid Sequence , Animals , Bayes Theorem , Child , Chlorocebus aethiops , Conserved Sequence , Coronavirus Infections/blood , Deltacoronavirus/classification , Deltacoronavirus/genetics , Deltacoronavirus/pathogenicity , Female , Haiti/epidemiology , Humans , Male , Models, Molecular , Mutation , Phylogeny , Vero Cells , Viral Zoonoses/blood
13.
medRxiv ; 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33791709

ABSTRACT

Coronaviruses have caused three major epidemics since 2003, including the ongoing SARS-CoV-2 pandemic. In each case, coronavirus emergence in our species has been associated with zoonotic transmissions from animal reservoirs 1,2 , underscoring how prone such pathogens are to spill over and adapt to new species. Among the four recognized genera of the family Coronaviridae - Alphacoronavirus, Betacoronavirus, Deltacoronavirus, Gammacoronavirus , - human infections reported to date have been limited to alpha- and betacoronaviruses 3 . We identify, for the first time, porcine deltacoronavirus (PDCoV) strains in plasma samples of three Haitian children with acute undifferentiated febrile illness. Genomic and evolutionary analyses reveal that human infections were the result of at least two independent zoonoses of distinct viral lineages that acquired the same mutational signature in the nsp15 and the spike glycoprotein genes by convergent evolution. In particular, structural analysis predicts that one of the changes in the Spike S1 subunit, which contains the receptor-binding domain, may affect protein's flexibility and binding to the host cell receptor. Our findings not only underscore the ability of deltacoronaviruses to adapt and potentially lead to human-to-human transmission, but also raise questions about the role of such transmissions in development of pre-existing immunity to other coronaviruses, such as SARS-CoV-2.

14.
Microbiol Resour Announc ; 10(8)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33632859

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain UF-8, with an in-frame 12-nucleotide deletion within open reading frame 3a (ORF3a), was isolated from a 78-year-old COVID-19 patient in March 2020.

15.
PLoS One ; 16(1): e0245352, 2021.
Article in English | MEDLINE | ID: mdl-33439885

ABSTRACT

In February and March, 2020, environmental surface swab samples were collected from the handle of the main entry door of a major university building in Florida, as part of a pilot surveillance project screening for influenza. Samples were taken at the end of regular classroom hours, between the dates of February 1-5 and February 19-March 4, 2020. Influenza A(H1N1)pdm09 virus was isolated from the door handle on four of the 19 days sampled. Both SARS-CoV-2 and A(H1N1)pdm09 virus were detected in a sample collected on February 21, 2020. Based on sequence analysis, the Florida SARS-CoV-2 strain (designated UF-11) was identical to strains being identified in Washington state during the same time period, while the earliest similar sequences were sampled in China/Hubei between Dec 30th 2019 and Jan 5th 2020. The first human case of COVID-19 was not officially reported in Florida until March 1st. In an analysis of sequences from COVID-19 patients in this region of Florida, there was only limited evidence of subsequent dissemination of the UF-11 strain. Identical or highly similar strains, possibly related through a common transmission chain, were detected with increasing frequency in Washington state between end of February and beginning of March. Our data provide further documentation of the rapid early spread of SARS-CoV-2 and underscore the likelihood that closely related strains were cryptically circulating in multiple U.S. communities before the first "official" cases were recognized.


Subject(s)
Environmental Monitoring , Influenza A Virus, H1N1 Subtype/isolation & purification , SARS-CoV-2/isolation & purification , Universities/statistics & numerical data , Florida , Humans , Phylogeny , SARS-CoV-2/classification , Surface Properties , Time Factors
16.
Front Neurol ; 12: 794640, 2021.
Article in English | MEDLINE | ID: mdl-35002935

ABSTRACT

Introduction: Non-motor symptoms of Parkinson's disease (PD) such as gastrointestinal (GI) dysfunction are common, yet little is known about how modifying dietary intake impacts PD symptoms. The aim of this study in individuals with PD was to determine whether a Mediterranean diet intervention is feasible and affects GI function, intestinal permeability and fecal microbial communities. Methods: A single-arm, 5-week Mediterranean diet intervention study was conducted in eight people with PD. Daily and weekly questionnaires were administered to determine changes in GI symptoms. Urine and stool samples were collected at baseline and after 5 weeks to assess intestinal permeability and fecal microbial communities. Additionally, live-in partners of the participants with PD were matched as controls (n = 8) for baseline urine and stool samples. Results: Participants with PD increased intake of Mediterranean diet based on adherence scores from baseline to week 5 (4.4 ± 0.6 vs. 11.9 ± 0.7; P < 0.01 with >10 representing good adherence), which was linked with weight loss (77.4 kg vs. 74.9 kg, P = 0.01). Constipation syndrome scores decreased after 5 weeks (2.3 ± 0.5 vs. 1.5 ± 0.3; P = 0.04). Bilophila, was higher at baseline in PD (0.6 ± 0.1% vs. 0.2 ± 0.1% P = 0.02) and slightly decreased after the diet intervention (0.5 ± 0.1%; P = 0.01). Interestingly, the proportion of Roseburia was significantly lower in PD compared to controls (0.6 ± 0.2% vs. 1.6 ± 0.3%; P = 0.02) and increased at week 5 (0.9 ± 0.2%; P < 0.01). No differences were observed for markers of intestinal permeability between the control and PD groups or post-intervention. Conclusions: Short-term Mediterranean diet adherence is feasible in participants with PD; correlated with weight loss, improved constipation, and modified gut microbiota. Clinical Trial Registration: ClinicalTrials.gov, identifier: NCT03851861.

17.
Int J Mol Sci ; 22(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374797

ABSTRACT

Our evolutionary and structural analyses revealed that the severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) spike gene is a complex mosaic resulting from several recombination events. Additionally, the fixation of variants has mainly been driven by purifying selection, suggesting the presence of conserved structural features. Our dynamic simulations identified two main long-range covariant dynamic movements of the novel glycoprotein, and showed that, as a result of the evolutionary duality, they are preserved. The first movement involves the receptor binding domain with the N-terminal domain and the C-terminal domain 2 and is maintained across human, bat and pangolin coronaviruses. The second is a complex network of long-range dynamics specific to SARS-CoV-2 involving the novel PRRA and the conserved KR*SF cleavage sites, as well as conserved segments in C-terminal domain 3. These movements, essential for host cell binding, are maintained by hinges conserved across human, bat, and pangolin coronaviruses glycoproteins. The hinges, located around Threonine 333 and Proline 527 within the N-terminal domain and C-terminal domain 2, represent candidate targets for the future development of novel pan-coronavirus inhibitors. In summary, we show that while recombination created a new configuration that increased the covariant dynamic movements of the SARS-CoV-2 glycoprotein, negative selection preserved its inter-domain structure throughout evolution in different hosts and inter-species transmissions.


Subject(s)
Recombination, Genetic , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Animals , Chiroptera/virology , Coronavirus/chemistry , Coronavirus/genetics , Evolution, Molecular , Host Specificity , Humans , Molecular Dynamics Simulation , Pangolins/virology , Phylogeny , Protein Binding , Protein Domains , SARS-CoV-2/genetics
18.
mSphere ; 5(5)2020 10 21.
Article in English | MEDLINE | ID: mdl-33087522

ABSTRACT

The malaria parasite, Plasmodium falciparum, was introduced into Hispaniola and other regions of the Americas through the slave trade spanning the 16th through the 19th centuries. During this period, more than 12 million Africans were brought across the Atlantic to the Caribbean and other regions of the Americas. Since malaria is holoendemic in West Africa, a substantial percentage of these individuals carried the parasite. St. Domingue on Hispaniola, now modern-day Haiti, was a major port of disembarkation, and malaria is still actively transmitted there. We undertook a detailed study of the phylogenetics of the Haitian parasites and those from Colombia and Peru utilizing whole-genome sequencing. Principal-component and phylogenetic analyses, based upon single nucleotide polymorphisms (SNPs) in protein coding regions, indicate that, despite the potential for millions of introductions from Africa, the Haitian parasites share an ancestral relationship within a well-supported monophyletic clade with parasites from South America, while belonging to a distinct lineage. This result, in stark contrast to the historical record of parasite introductions, is best explained by a severe population bottleneck experienced by the parasites introduced into the Americas. Here, evidence is presented for targeted selection of rare African alleles in genes which are expressed in the mosquito stages of the parasite's life cycle. These genetic markers support the hypothesis that the severe population bottleneck was caused by the required adaptation of the parasite to transmission by new definitive hosts among the Anopheles (Nyssorhynchus) spp. found in the Caribbean and South America.IMPORTANCE Historical data suggest that millions of P. falciparum parasite lineages were introduced into the Americas during the trans-Atlantic slave trade, which would suggest a paraphyletic origin of the extant isolates in the Western Hemisphere. Our analyses of whole-genome variants show that the American parasites belong to a well-supported monophyletic clade. We hypothesize that the required adaptation to American vectors created a severe bottleneck, reducing the effective introduction to a few lineages. In support of this hypothesis, we discovered genes expressed in the mosquito stages of the life cycle that have alleles with multiple, high-frequency or fixed, nonsynonymous mutations in the American populations which are rarely found in African isolates. These alleles appear to be in gene products critical for transmission through the anopheline vector. Thus, these results may inform efforts to develop novel transmission-blocking vaccines by identifying parasite proteins functionally interacting with the vector that are important for successful transmission. Further, to the best of our knowledge, these are the first whole-genome data available from Haitian P. falciparum isolates. Defining the genome of these parasites provides genetic markers useful for mapping parasite populations and monitoring parasite movements/introductions.


Subject(s)
Adaptation, Physiological/genetics , Anopheles/parasitology , Genetic Variation , Phylogeny , Plasmodium falciparum/genetics , Animals , Genetic Markers , Haiti , Malaria, Falciparum/parasitology , Mosquito Vectors/parasitology , Mutation , Plasmodium falciparum/classification , Plasmodium falciparum/physiology , South America , United States , Whole Genome Sequencing
19.
ACS Chem Neurosci ; 11(20): 3267-3276, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32941730

ABSTRACT

Peripheral immunity is thought to be dysregulated in Parkinson's disease (PD) and may provide an avenue for novel immunotherapeutic interventions. Gut microbiota is a potential factor for modulating immunotherapy response. Considering the possibly complex role of the gut-brain axis in PD, we used a preclinical model to determine the effects of gut microbiota dynamics in mice receiving an immunotherapeutic intervention compared to controls. A total of 17 M83 heterozygous transgenic mice were used in this study. Mice in the treatment arm (N = 10) received adoptive cellular therapy (ACT) by injection, and control mice (N = 7) were injected with saline at 8 weeks of age. All mice received peripheral α-syn fibrils to hasten parkinsonian symptoms via an intramuscular injection 1 week later (9 weeks of age; baseline). Fecal pellets were collected from all mice at three time points postinjection (baseline, 6 weeks, and 12 weeks). DNA from each stool sample was extracted, and 16S rDNA was amplified, sequenced, and analyzed using QIIME2 and RStudio. Differences in the relative abundance of bacterial taxa were observed over time between groups. No significant differences in alpha diversity were found between groups at any time point. UniFrac measures of phylogenetic distance between samples demonstrated distinct clustering between groups postbaseline (p = 0.002). These differences suggest that the gut microbiome may be capable of influencing immunotherapy outcomes. Conclusively, we observed distinctly different microbiota dynamics in treated mice compared to those in the control group. These results suggest a correlation between the gut-brain axis, PD pathology, and immunotherapy.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Animals , Feces , Mice , Mice, Transgenic , Parkinson Disease/therapy , Phylogeny
20.
PLoS Pathog ; 16(8): e1008772, 2020 08.
Article in English | MEDLINE | ID: mdl-32866214

ABSTRACT

The tick-borne apicomplexan parasite, Babesia bovis, a highly persistent bovine pathogen, expresses VESA1 proteins on the infected erythrocyte surface to mediate cytoadhesion. The cytoadhesion ligand, VESA1, which protects the parasite from splenic passage, is itself protected from a host immune response by rapid antigenic variation. B. bovis relies upon segmental gene conversion (SGC) as a major mechanism to vary VESA1 structure. Gene conversion has been considered a form of homologous recombination (HR), a process for which Rad51 proteins are considered pivotal components. This could make BbRad51 a choice target for development of inhibitors that both interfere with parasite genome integrity and disrupt HR-dependent antigenic variation. Previously, we knocked out the Bbrad51 gene from the B. bovis haploid genome, resulting in a phenotype of sensitivity to methylmethane sulfonate (MMS) and apparent loss of HR-dependent integration of exogenous DNA. In a further characterization of BbRad51, we demonstrate here that ΔBbrad51 parasites are not more sensitive than wild-type to DNA damage induced by γ-irradiation, and repair their genome with similar kinetics. To assess the need for BbRad51 in SGC, RT-PCR was used to observe alterations to a highly variant region of ves1α transcripts over time. Mapping of these amplicons to the genome revealed a significant reduction of in situ transcriptional switching (isTS) among ves loci, but not cessation. By combining existing pipelines for analysis of the amplicons, we demonstrate that SGC continues unabated in ΔBbrad51 parasites, albeit at an overall reduced rate, and a reduction in SGC tract lengths was observed. By contrast, no differences were observed in the lengths of homologous sequences at which recombination occurred. These results indicate that, whereas BbRad51 is not essential to babesial antigenic variation, it influences epigenetic control of ves loci, and its absence significantly reduces successful variation. These results necessitate a reconsideration of the likely enzymatic mechanism(s) underlying SGC and suggest the existence of additional targets for development of small molecule inhibitors.


Subject(s)
Antigens, Protozoan , Babesia bovis , Gene Conversion/immunology , Genome, Protozoan/immunology , Protozoan Proteins , Rad51 Recombinase , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Babesia bovis/genetics , Babesia bovis/immunology , DNA, Protozoan/genetics , DNA, Protozoan/immunology , Haploidy , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Rad51 Recombinase/genetics , Rad51 Recombinase/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...